NAME (Print):			Chemistry 320M/328M Dr. Brent Iverson 2nd Midterm October 22, 2025		28M
SIGNATURE:					
	Please print the first three letters of your last name in the three boxes				

Please Note: Please take your time. We are giving you three hours to take this exam even though it is really a one hour exam. The idea is to give you enough time to show us what you know, not how fast you can draw structures. Please take all the time you need to draw the best possible structures that you can! Do not be surprised if you are comfortable leaving the exam long before 9 PM. That is to be expected!

FINALLY, DUE TO SOME UNFORTUNATE RECENT INCIDENCTS YOU ARE NOT ALLOWED TO INTERACT WITH YOUR CELL PHONE IN ANY WAY. IF YOU TOUCH YOUR CELL PHONE DURING THE EXAM YOU WILL GET A "0" NO MATTER WHAT YOU ARE DOING WITH THE PHONE. PUT IT AWAY AND LEAVE IT THERE!!!

Student Honor Code for the University of Texas at Austin

"I pledge, as a member of The University of Texas at Austin community, to do my work honestly, respectfully, and through the intentional pursuit of learning and scholarship."

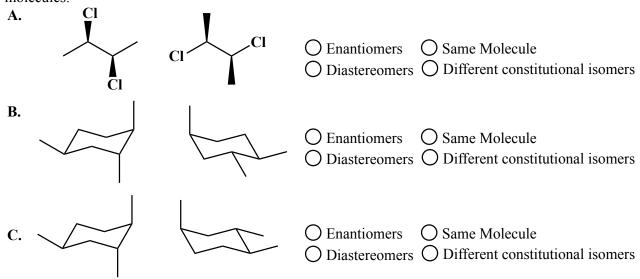
Elaboration

- 1. I pledge to be honest about what I create and to acknowledge what I use that belongs to others.
- 2. I pledge to value the process of learning in addition to the outcome, while celebrating and learning from mistakes.
- 3. This code encompasses all of the academic and scholarly endeavors of the university community.

(Your signature) PERIODIC TABLE OF THE E 18 Zn Sb Te Ru Cd W 0s Hq Re 104 108 109 14) 105 18) 106 107 Ume Ump : Umh Ums Mmo Ra AC Ung 63 Nd 135 Pm 137 Sm 138 Gd Tb Dy Ho Tm Eu ³⁾ 96 93 944.5 PU 13.67 AM 13.51 GM 14.78 13.51 GM 15.20 20.45 ND 128 6.10 ND 128 BK PAPERTECH

Comp	ound	pK _a
Hydrochloric acid	<u>H</u> -Cl	-7
Protonated alcohol	⊕ RCH ₂ O <mark>H</mark> 2	-2
Hydronium ion	<u>H</u> ₃ O [⊕]	-1.7
Carboxylic acids	O R-CO- <u>H</u>	3-5
Thiols	RCH₂S <mark>H</mark>	8-9
Ammonium ion	H ₄ N [⊕]	9.2
β-Dicarbonyls	O O RC-C <mark>H</mark> 2-CR'	10
Primary ammonium		10.5
β-Ketoesters	O O RC-C <u>H</u> 2-COR'	11
β-Diesters	O O ROC-C <u>H</u> 2-COR'	13
Water	– HO <mark>H</mark>	15.7
Alcohols	RCH ₂ O <u>H</u> O	15-19
Acid chlorides	RC <u>H</u> ₂ -CCI	16
Aldehydes	RC <mark>H₂-CH</mark>	18-20
Ketones	RC <mark>H₂-CR'</mark>	18-20
Esters	O RC <mark>H₂-COR'</mark>	23-25
Terminal alkynes	RC≡C— <u>H</u>	25
LDA	<u>H</u> -N(<i>i</i> -C ₃ H ₇) ₂	40
Terminal alkenes	R ₂ C=C- <u>H</u> H	44
Alkanes	CH ₃ CH ₂ - <u>H</u>	51

- **1.** (5 pts) What is the most important question in organic chemistry?
- **2.** (12 pts) Write an acceptable IUPAC name for the following two molecules. Where appropriate, use E and Z or R and S.


3. (6 pts) Draw the structure that corresponds to the following name:

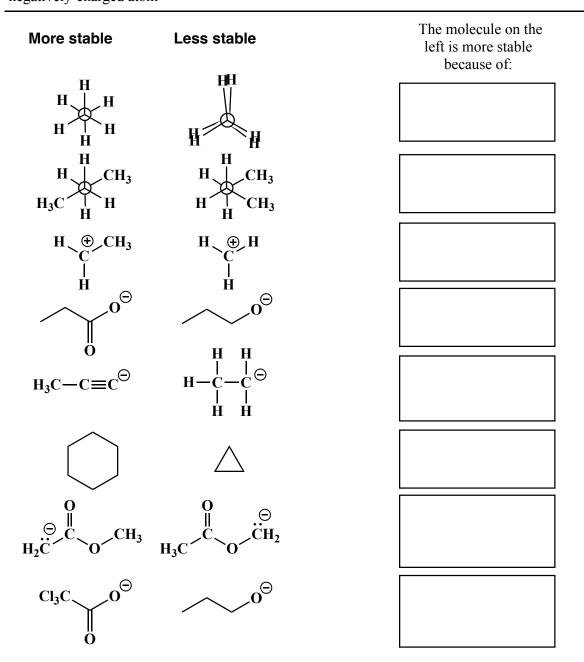
(7*S*,2*E*,5*Z*)-5-((*S*)-2-chloropropyl)-7-methyl-2,5-nonadiene

4. (9 pts) Amides are best represented as the hybrid of three contributing structures. Draw the second and third important contributing structures in the spaces provided, including all lone pairs and formal charges. For the two structures on the left, use arrows to indicate the movement of electrons to give the structures you drew immediately to the right. There is no need to draw any circles around any of these contributing structures. You might want to read these directions again to make sure you know what we want

5. (7 pts) Draw the two other most important contributing structures for the chloronium ion. Fill in the circle next to "Most important" under the contributing structure of the three that makes the largest constribution to the overall resonance hybrid. You do NOT need to draw arrows on any of the structures for this problem. **Because this is a mechanism type question, use wedges and dashes to indicate stereochemistry, write "racemic" if appropriate, draw all lone pairs and formal charges.**

6. (6 pts) Fill in the circle to indicate the appropriate relationship between the following pairs of molecules.

Signature		


Pg 3 _____(28)

7. (28 pts) For each pair of molecules, the one drawn on the left is more stable (lower in energy) because of one or more principles we have discussed. In the boxes provided, write the letter corresponding to the principle or principles (yes there can be more than one!) that explain why the molecule on the left is more stable.

- A. Steric Strain
- **B.** Angle Strain
- C. Torsional Strain
- **D.** The inductive effect

- **E.** Hyperconjugation
- **F.** Delocalization of a charge
- **G.** Delocalization of pi electron density over more than two atoms (pi-way)

- **H.** Greater s-character of the orbital containing an electron pair on a negatively-charged atom
- **I.** The negative charge is on a more electronegative element
- **J**. The negative charge is on a larger atom

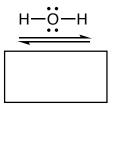
Signature	Pg 4	(8)
8. (8 points) It is helpful to think of organic chemistry me mechanistic elements. We have learned four of these s the appropriate mechanistic element to choose if you see	so far. Fill in the circle th	
A. When the carbon containing piece is a base or there is a s	strong acid present	
Make a bond between a nucleophile and an	electrophile	
Break a bond to give stable molecules or io	ns	
Add a proton		
Take a proton away		
B. You see both a good nucleophile and electrophile present	t	
Make a bond between a nucleophile and an e	electrophile	
Break a bond to give stable molecules or ion	าร	
Add a proton		
Take a proton away		
C. When the carbon containing piece is a strong acid or ther	re is a base present	
Make a bond between a nucleophile and an e	electrophile	
Break a bond to give stable molecules or ion	าร	
Add a proton		
Take a proton away		
D. When none of the above are true and you can see how th can fragment to create stable molecules or ions.	ne carbon containing piece	•
Make a bond between a nucleophile and an	electrophile	
Break a bond to give stable molecules or io	ns	
Add a proton		
Take a proton away		

9. (2 pts each) For the following equilibria, fill in the circle that is appropriate.

10. (3 pts each) For the following species we have seen in mechanisms, fill in the circle that is appropriate.

н-сі	Cl ₂	*Br		H ⊕ H O * racemic
nucleophile	nucleophile	nucleophile	nucleophile	nucleophile
electrophile	electrophile	electrophile	electrophile	electrophile
strong acid	strong acid	strong acid	strong acid	strong acid
Н−О−Н 	•	н-о-н	Br [⊖]	
nucleophile	nucleophile	Onucleophile	Onucleophile	nucleophile
electrophile	electrophile	electrophile	electrophile	electrophile
strong acid	strong acid	strong acid	strong acid	strong acid

11. (20 pts) Complete the following three structures by adding appropriate numbers of lone pair electrons, H atoms, and formal charges to the atoms in the boxes. You must adjust your answers to indicate the predominant species at each indicated pH value. (You do not have to add anything such as H atoms to atoms not drawn in the boxes.) This problem is testing your understanding of the relationship of protonation state to pH to pKa values for certain functional groups we have discussed. Next, in the space provided, write the overall charge on each structure at the indicated pH. For your reference, here are the relevant pKa values:

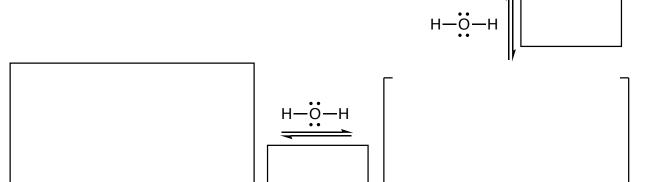

$$\begin{array}{ccc}
O & & & \\
R & & & \\
\hline
C & OH & R-NH_3 & R-SH \\
pK_a = 3 & pK_a = 10.5 & pK_a = 8.5
\end{array}$$

13. (32 pts) Complete the mechanism for the following reaction of an alkene with Br_2 in the presence of H_2O . Be sure to show arrows to indicate movement of <u>all</u> electrons, write <u>all</u> lone pairs, <u>all</u> formal charges, and <u>all</u> the products for each step. Remember, I said <u>all</u> the products for each step. YOU ONLY NEED TO DRAW ONE STEREOISOMER OF A CHIRAL INTERMEDIATE OR PRODUCT (using wedges and dashes as appropriate) IF A NEW

CHIRAL CENTER IS CREATED IN AN INTERMEDIATE OR PRODUCT, MARK IT WITH AN ASTERISK AND LABEL THE MOLECULE AS "RACEMIC" IF APPROPRIATE. In the boxes provided under/beside the arrows, write which of the 4 most common mechanistic elements describes each step (make a bond, break a bond, etc.). Be sure to notice the

questions at the end.

Product(s)



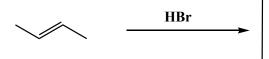
(2 pts) How many total stereoisomers are produced by this reaction?

(2 pts) As the reaction proceeds, does the pH of the solution increase, decrease, or stay the same?

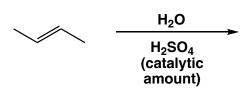
Signature	Pg 8	(32)
9	150	(32)

13. (32 pts) Complete the mechanism for the following reaction of an alkene with H_2O in the presence of catalytic amount of H_2SO_4 . Be sure to show arrows to indicate movement of <u>all</u> electrons, write <u>all</u> lone pairs, <u>all</u> formal charges, and <u>all</u> the products for each step. Remember, I said <u>all</u> the products for each step. YOU ONLY NEED TO DRAW ONE STEREOISOMER OF A CHIRAL INTERMEDIATE OR PRODUCT (using wedges and dashes as appropriate) IF A NEW CHIRAL CENTER IS CREATED IN AN INTERMEDIATE OR PRODUCT, MARK IT WITH AN ASTERISK AND LABEL THE MOLECULE AS "RACEMIC" IF APPROPRIATE. In the boxes provided under/beside the arrows, write which of the 4 most common mechanistic elements describes each step (make a bond, break a bond, etc.). Be sure to notice the questions at the end.

(2 pts) How many total stereoisomers are produced by this reaction?


Product(s)

(2 pts) As the reaction proceeds, does the pH of the solution increase, decrease, or stay the same?


Pg 9	 (26

14. (3 or 5 pts each) The following reactions all involve chemistry of alkenes. Fill in the box with the product(s) that are missing from the chemical reaction equations. Draw only the predominant regioisomer product or products (i.e. Markovnikov or non-Markovnikov products) and please remember that you must draw the structures of all the product stereoisomers using wedges and dashes to indicate stereochemistry as appropriate. When a racemic mixture is formed, you must write "racemic" under both structures EVEN THOUGH YOU DREW BOTH STRUCTURES.

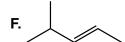

Δ

В.

4	,		
1		_	

D	

1. BH₃

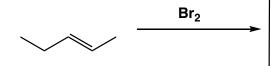

2. H₂O₂ / NaOH

ı	ŀ	-	
Į	ь		

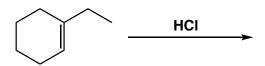
1. OsO₄

2. NaHSO₃ / H₂O

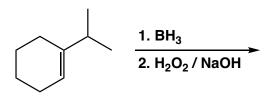
2. (CH

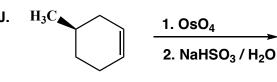

)3		
$I_3)_2S$		

•		!	


Pg 10 (23)

14. (3 or 5 pts each) The following reactions all involve chemistry of alkenes. Fill in the box with the product(s) that are missing from the chemical reaction equations. Draw only the predominant regioisomer product or products (i.e. Markovnikov or non-Markovnikov products) and please remember that you must draw the structures of all the product stereoisomers using wedges and dashes to indicate stereochemistry when appropriate. When a racemic mixture is formed, you must write "racemic" under both structures EVEN THOUGH YOU DREW BOTH STRUCTURES.

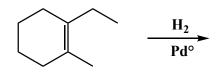

G.


H.

I.

J.

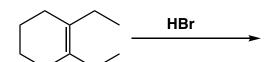
K.


$$\begin{array}{c|c} & & \text{Br}_2 \\ \hline & & \text{H}_2\text{O} \end{array}$$

Signature)		
Signature	ļ	 	

Pg 11 _____(18)

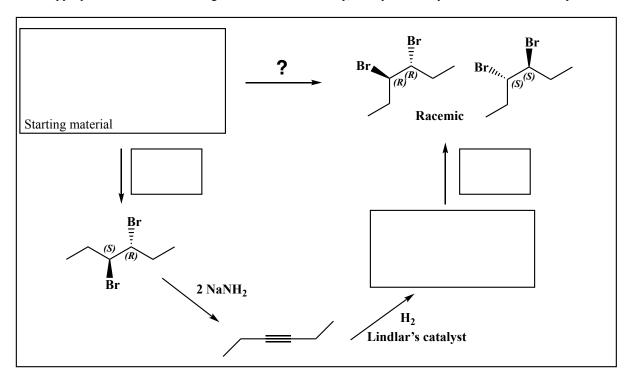
14. (5 or 9 pts each) The following reactions all involve chemistry of alkenes. Fill in the box with the product(s) that are missing from the chemical reaction equations. Draw only the predominant regioisomer product or products (i.e. Markovnikov or non-Markovnikov products) and please remember that you must draw the structures of all the product stereoisomers using wedges and dashes to indicate stereochemistry as appropriate. When a racemic mixture is formed, you must write "racemic" under both structures EVEN THOUGH YOU DREW BOTH STRUCTURES.

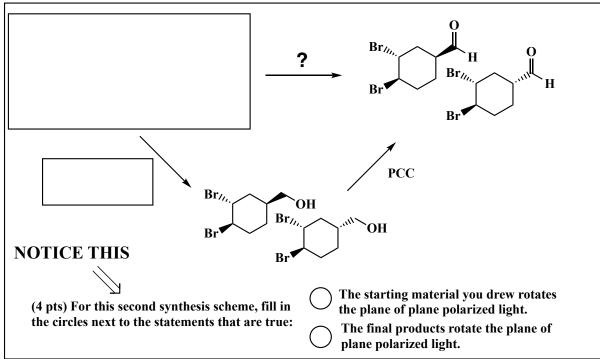

L.

М.

$$\frac{1. \, \mathrm{O_3}}{2. \, (\mathrm{CH_3})_2 \mathrm{S}}$$

N.




15. (8 pts total) If you understand terpenes this one is not hard. Fill in the circle to designate how many isoprene units are present in each terpene molecule.

Linalool (major component of lavender) Squalene (a very important molecule in the body that is coverted into steroid) 2 Isoprene units 3 Isoprene units 4 Isoprene units 5 Isoprene units 5 Isoprene units 6 Isoprene units 6 Isoprene units

16. (7 pts total) It is important to think about reactions in both directions. To solve synthesis questions you will need to work backwards from a target molecule. Both reactions shown below use the same starting material. **Write the structure of that starting material in the box provided on the left, then write the appropriate reagents in the boxes over each arrow. All** observed products are shown for each reaction.

17. (16 pts total) The point of organic chemistry is synthesis, the conversion of simpler molecules to more complicated ones with enhanced structure and function. Each reaction you are learning should be thought of as a "tool" that allows you to create a desired type of molecule. These tools can be used in an almost infinite number of combinations to create truly interesting molecules. In the boxes provided, draw the structures of the molecule or the required reagent indicated in this synthesis scheme. FOR THIS ONE, IF STEREOISOMERS ARE CREATED YOU MUST DRAW THEM ALL USING WEDGES AND DASHES. And you must write "racemic" when appropriate. You will not recognize all of this chemistry, but by the time you finish this semester you will!!

